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Heat t ransfer  in a d ispersed sys tem consist ing of a uniform mixture of a c o a r s e -  and a f ine-  
grained mater ia l  with boundary conditions of the fourth kind is considered.  The solution is 
compared  with experimental  data. Expressions estimating the time of onset of thermal quasi-  
equilibrium are  obtained. 

The method of solving problems of this type is usually based on a par t icular  ordered s t ruc ture  for the 
mixture and selecting an e lementary cell of the sys tem.  By the lat ter  we mean a minimal volume such that 
if it is duplicated in a par t icu lar  manner an infinite number of t imes it reproduces  the s t ruc ture  Of the mix-  
ture.  For a sys tem consist ing of  a uniform mixture of par t ic les  corresponding to the condition d 1 >> d2, 
this is a cube at the center  of which is a par t ic le  of dimension dt. In the limit,  the problem can be reduced 
to the discussion of heat t ransfer  between a spherical  source  and a semi-infini te  mass  of d ispersed mater ia l .  
A s imi la r  problem was investigated in [1, 2] for  boundary conditions of the third kind. As a resul t , the  r e l a -  
tive coefficients of heat t ransfer  between a sphere  and a dispersed medium were  determined.  

The above resul t s ,  p rocessed  in accordance  with the computational recommendat ions  of [2], a re  shown 
in Fig. 1. It follows f rom this that the resul ts  are  in conflict with each other,  a difference in the relat ion 
between Nu and d 1 being observed.  

Heat t ransfer  in a uniform mixture of two dispersed mater ia ls  having different t empera tures  at the 
initial moment of time was discussed in [8-10]. Thus, Tsukhanova and Salamandra recommend the following 
equations for the calculation of the tempera ture  of the mixture components:  

01= (s~ ~ . t  [m ,-i- exp(-- k,)], (I) 

0 0 /?l  
02 = (6--t2) ~ [1-- exp(-- k~)]. (2) 

t ,  - s  o . t 2 - t  ~ 
k 6 ~ ( l + r n ) ;  m--  ~hcl ; 01= ~-W"W-~o ' 0~= . t  o t ~ 

clPldl ~]2c2 ,t--*2 l - -  2 

Since the hea t - t r ans fe r  coefficient a is unknown in these equations, the authors propose to determine 
it in advance for each case  in experiments on the cooling of a sphere  in a d ispersed sys tem.  

The following equation was obtained in [9] on the basis  of experiments on heat t ransfer  in a uniform 
mixture of two dispersed mater ia ls  using the data of [8]: 

Bi = --0.783--]-0.726 0,5 (T~- T ~ + T  h 
2T ~ �9 (3) 

The hea t - t r ans fe r  coefficient,  computed f rom Eq. (3), differs f rom experimental  data of [1] in many 
eases  by more  than 50 t imes.  This indicates the need to seek other solutions of the problem.  We seek the 
solution for the cases  d 1 >> d 2 in the following conditions. 
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Fig. 1. The Nusselt  number  Nu as a function of d 1 (dl, mm): 1) cooling of a metal  sphere  in a 
filling of metal  spheres  (d 2 = 4.76 mm) in the t empera tu re  range 660-250~ [1]; 2) as above in the 
t empera tu re  range 250-100~ [1]; 3) cooling of a metal  sphere  in a filling of half -coke in the t em-  
pe ra tu re  interval  600-250~ [1] (d 2 = 3-5 mm); 4) cooling of a metal  sphere  in a filling of metal  
spheres  in the t empera tu re  interval  350-100~ d 1 = d 2 [2]. 

F ig . 2 .  The exper imenta l  apparatus:  1) drying cabinet; 2) wooden box; 3) spheres ;  4) porcela in  
grid; 5) sand; 6) cold thermocouple  junction; 7) galvanometer .  

1. The more  d ispersed mater ia l  is assumed to be quasi-homogeneous,  subject  to the Four ie r  dif-  
ferent ia l  equation in t e rms  of the effective charac te r i s t i c s  of the medium. 

2. The sys tem of thermal  conductivity differential  equations is solved with boundary conditions of the 
fourth kind. 

It is assumed that the p rocess  sat isf ies the condition Fo > FOcr , i .e. ,  the t ime during which the two 
mater ia ls  a r e  in contact has no effect on the applicability of condition (1) [3, 4]. That this is pe rmiss ib le  is 
conf i rmed,  in par t icu la r ,  by probe methods of determining the thermophysical  cha rac te r i s t i c s  of the d is-  
pe r sed  mater ia l s  [5] and also by the comparison of the analytic solution [6] with exper imental  resu l t s  [7]. 

To simplify the solution we rep lace  the e lementary  cell  - a  c u b e - b y  an equivalent sphere  with a 
par t ic le  d 1 at its center .  The effect of the surrounding medium on the boundaries  of an e lementary  volume 
is determined by the adiabatic condition. In this ease  the change i n t h e  a rea  of the e lementary  sur face  as 
a resu l t  of replacing the cube by an equivalent sphere  does not play a significant ro le .  For  an adiabatic 
composite sphere ,  the par t ic les  of which have different  t empera tu res  at the initial moment of t ime, the prob-  
lem can be formulated mathematical ly  as follows: 

boundary conditions 

O0,. al ( a~OL_l 2 00, ) , 
0"~ Or ~ ' r Or ,<~; 

_ _  ( a~O,, 2 002 ) 00~ =az + , 
O, \ Or 2 r Or J, R, 

ag~ ae2 for r =R,, 

01= 02 for r =R1 arid T>O, 

00, : 0  for r : 0 ,  
ar 

(78z =0  for r>~ R2, 
Or 
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Fig.  3. Compar i son  of the calculated and exper imenta l  r e su l t s  
if, min): 1) calculat ion by numer i ca l  method; 2) exper imenta l  
resu l t s ;  3) calcula t ion by the method of [1]. 

F ig .4 .  Compar i son  of the solution by the numer ica l  method 
with that given by (9), (10) if, min): 1) numer i ca l  method; 2) 
f r o m  Eqs .  (9), (10). 

initial conditions 

"r=O, 01=I , 02=0. (4) 

This  p rob lem was solved numer ica l ly  using a Ura l -3  computer .  The t e m p e r a t u r e s  at the cen te r  of the 
sphere  and at  the outer  boundary of the cell  we re  computed to an accuracy  of 0.2%. 

The equi l ibr ium t e m p e r a t u r e  is a s sumed  to be  

0r - Ot--O~z -~0,01. (5) 
0l 

The computed curves  for  the cooling of a sphe re  were  compa red  with the exper imenta l  r e su l t s  ob-  
tained f r o m  the appara tus  shown in Fig. 2. 

The drying cabinet  contains a wooden box of dimensions  90 • 90 • 120 m m  with meta l  or  gypsum 
sphe re s  with d 1 between 9.55 and 20.5 ram.  The sphe res  we re  glued with epoxide r e s in  to porce la in  grid 
gra t ings  with d = 1.1 m m  and pitch 25 m m ,  the m a s s  of which is negligible in compar i son  with the fi l l ing. 
A c o p p e r - c o n s t a n t a n  thermocouple  of 0.1 m m  wi re  was fixed to the cent ra l  sphe re .  A constant  t e m p e r a -  
tu re ,  20~ higher  than that of the d i spersed  ma te r i a l ,  was maintained in the cabinet .  The cold thermocouple  
junction was placed in a smal l  box outside the cabinet .  The emf of the thermocouple  was m e a s u r e d  using 
an M-16 ga lvanomete r  (scale unit 0.1~ After  the spheres  we re  initially heated to the equi l ibr ium t e m p e r a -  
ture  (taking 2-3 h) the d i spe r sed  m a t e r i a l s  - fine sand, 101,274,  632 g - was poured into the box. Its t h e r m o -  
phys ica l  p rope r t i e s  a r e  given in Table  1. 

The cooling curves  for  the sphe re  in one set  of conditions were  plotted 4-6 t imes ,  a f t e r  which the r e -  
suiting data were averaged. The scatter of the experimental points did not exceed *15%. 

Calculated and experimental results are compared on Fig. 3. We see from the graphs that the calcu- 
lated results agree with the experimental results. Also shown in Fig. 3 are the results of calculating the 
time for the initial heating of the mixture using the method of [i]. We see that calculation using the method 
of [i] significantly reduces the true time to reach the equilibrium temperature. 

Thus, calculation of the temperature change in the mixture using an adiabatic composite sphere and 
boundary conditions of the fourth kind yields satisfactory agreement with experiment. In this connection, an 
attempt was made to find an approximate analytic solution of the problem. To do this, the system (4) was 
reduced to the following form for N = 3, M = 3: 

dO~-I =b  (Oz-- 01), 
dz 

d02 =c(0L--02) for "r =0, 01=1, 02=0. 
d~ 
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TABLE i .  Thermophys ica l  Cha rac t e r i s t i c s  of 
Sand 

Thermophysical 
characteristics 

a,'mVh 
X, W/m z . deg 
c, k//deg 

Sand size, 

101 274 t 

5,9.10-~ 7,4.10 -4 
0,135 0,206 
0,452 0,452 

632 

8,58.10 -4 
0,248 
O,  452 

Eliminating the r ight  side of these equations and 
solving by themethod of separa t ing  the va r i ab l e s ,  we 
obtain 

0~= ~ {exp [ - - � 9  (b q-c)] --1} +1,  

0 2 = ~ {1-- exp [--r  (b q- c)]}.. 
v -F c 

(6) 

Here  

b = 8alL~ - -  ; c = 8azLlRt  

R~ [~,, (Rz-- RI) +L2R~] (R~-- R~) [~i (Rz-- R,) + ~,~R~I 

If we subst i tute  the condition that 0 t and 02 coincide to within p, we obtain f r o m  (6) the t ime  to r e a c h  
the equi l ibr ium t e m p e r a t u r e  

- -  lnp 
b §  

When r --* *~ the equi l ibr ium t e m p e r a t u r e  is defined by the equation 

az~,lR~ (7) 
% = ;qa~R~+ ~zal (R~--R~) 

The equi l ibr ium t e m p e r a t u r e  of the s p h e r e - s h e l l  s y s t e m  can also be  de te rmined  by a different  method: 
f r o m  the heat  ba lance  equation. Assuming  that 0 t = 1 and 02 = 0 for  r = 0, we obtain 

4 ~m1~R~ = ~,o,~R, ~ o~ + T c~p~(e~--R~)or: 
3 

f r o m  which 

By compar ing  (7) and (8) we find that the exact  solution differs  f r o m  the inexact inhaving R32/Ri in place 
of R~ in the denominator  of the f rac t ion.  Hence, the exact  value of the coefficient  c has  the f o r m  

8azhlRx 

Then 

�9 b + c h =  

[XzRI+ ~,i (Rz-- R1)] R1 ~ R1 

After  s i m i l a r  co r rec t ions  the computat ional  express ions  for  Ot, 02, and T take the following fo rms :  

b 
01 - -  {exp [--  -c (b + cD] -- l}  + l, 

b + c h  
(9) 

0 2  - -  ck {1 -k exp [--  �9 (b -t- ca)]}, (i0) 
b + c j ,  

"r -- lnp (11) 
b q-c h 

Equations (9}, (11) a r e  valid for  16 < (dl/d2) < 250; 2 < (ar ia2)  < 760. Since the above co r rec t ions  hold 
unconditionally only at the point r = *% we can compare  the computed values  using (9) and Cl0) wi th  the nu-  
m e r i ca l  solution of the s ame  p rob lem (Fig. 4). It follows f r o m  the graphs  that the approx imate  analytic so lu-  
tion ag rees  with the numer i ca l  solution Of the p rob lem to within ~-5%. In this connection, Eqs.  (9), (10} can be 
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used to calculate the temperature at typical points of the mixture, while 0-1) is recommended for calculating 
the time needed for the components of a uniform mixture of two dispersed materials to reach equilibrium 
temperature. Then R 2 is determined from the equations 

V 1- 2 

where 

[~,: V---A----I; ~2: V2 
V1 + Vz Vl+ V2 

t ,  t2, t00 t o 
TO, 
Tk 
7]I, 772 
CI, O2,PI, P2 
dl,d2 
r 

Vl, V2 
N,M 
81, 82 

N O T A T I O N  

are the current and initial temperatures of the hot and cold media, ~ 
are the initial temperatures of the components, ~ 
is the equilibrium temperature, ~ 
are the volume concentrations of mixture components; 
are the heat capacities and densities of components; 
are the dimensions of component particles; 
is the current value of coordinate; 
are the thermal diffusivity and thermal conductivity of components; 
are the volumes of coarse-  and fine-grained materials; 
are the numbers of separation points in the sphere and the spherical shell; 
are the relative nondimensional temperatures of the hot medium at the center of the sphere 
and of the cold medium at the outer boundary of the elementary cell. 
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